חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics Bachelor of Tourism Innovation and Development Bachelor of Natural Resource Management and Nature Conservation	
QUALIFICATION CODE: O7BSAM ; 07BTID ; 07BNTC	LEVEL: 5
COURSE CODE: IAS501S	COURSE NAME: INTRODUCTION TO APPLIED STATISTICS
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MR. ROUX, AJ \& MR. KASHIHALWA, S
MODERATOR:	DR. D. NRIRAMPEBA

INSTRUCTIONS
1. Answer ALL the questions.

PERMISSIBLE MATERIALS

1. Non-Programable Scientific Calculator

ATTACHMENTS

1. Statistical Tables (z-tables)
2. $1 \times \mathrm{A} 4$ Graph Paper (to be supplied by Examinations Department)
3. Formulae Sheets

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page)

QUESTION $1 \quad[15 \times 2=30]$

1. A numerical value used as a summary measure for a sample, such as sample mean, is known as a
A. population parameter
B. sample parameter
C. sample statistic
D. population mean
E. None of the above answers is correct.
2. If a data set has an even number of observations, the median
A. can not be determined
B. is the average value of the two middle items
C. must be equal to the mean
D. is the average value of the two middle items when all items are arranged in ascending order
E. None of the above answers is correct
3. The standard deviation of a sample of 100 observations equals 64 . The variance of the sample equals
A. 8
B. 10
C. 6400
D. 4096
E. None of the above answers is correct.
4. The variance of a sample of 81 observations equals 64. The standard deviation of the sample equals
A. 0
B. 4096
C. 8
D. 6,561
E. None of the above answers is correct.

Case 1 : Consider the result of a fictional Stats final exam taken by 155 students, as given in the following relative frequency distribution:

Grade	Less than 50	$50-59$	$60-69$	$70-79$	$80-89$	$90-$ 100		
frequency	35	40	30	25	15	10		

5. Refer to Case 1-How many students received at least a 70 in this exam?
A. 25
B. 50
C. 25
D. 30
E. 40
6. Refer to Case 1-How many students received at most a 59 on this exam?
A. 10
B. 45
C. 75
D. 40
E. 66

Case 2 : The following data show the number of hours worked by 200 statistics students. Number of Hours Frequency

HOURS	\# Students
0 --- 9	40
10 ---- 19	50
$20---29$	70
$30----39$	40

7. Refer to Case 2. The class width for this distribution
A. 9
B. 10
C. 11
D. varies from class to class
E. None of the above answers is correct.
8. Refer to Case 2. The number of students working 19 hours or less
A. 40
B. 50
C. 90
D. can not be determined without the original data
E. None of the above answers is correct.
9. Refer to Case 2. The relative frequency of students working 9 hours or less
A. 0.2
B. 0.45
C. 40
D. can not be determined from the information given
E. None of the above answers is correct.
10. Refer to Case 2. The cumulative relative frequency for the class of 10-19
A. 90
B. 0.25
C. 0.45
D. can not be determined from the information given
E. None of the above answers is correct.
11. A teacher asks students to identity their favourite reality television show. What type of measurement scale do the different television shows make up?
A. Nominal
B. Ordinal
C. Interval
D. Ratio
12. The seminar rooms in the library are identified by the letters A to H. A researcher records the number of classes held in each room during the first semester. What kind of graph would be appropriate to present the frequency distributions of these data?
A. Histogram
B. Scatterplot
C. Bar chart
D. Box plot
13. What is the mean for the following scores: $2,5,4,1,8$?
A. 3
B. 4
C. 5
D. 20
14. What is the median for the following scores: $2,5,4,1,8$?
A. 3.5
B. 4
C. 4.5
D. 7
15. Which of the following sets of scores has the greatest variability (range)?
A. $2,5,8,11$
B. $13,13,13,13$
C. C. $20,25,26,27$
D. D. $42,43,44,45$

QUESTION 2 [15]
The distance traveled (in kilometers) by a courier service motorcycle on 30 trips were recorded by the driver.

224	219	221	227	220	217	217	232	222	226
218	213	223	230	210	213	218	222	234	216
218	223	215	219	228	225	225	220	217	215

2.1) Use the data provided above to construct a frequency distribution table with 210 as the lower limit of your first class interval and a constant width of four (4) units for all intervals.
2.2) Construct a histogram and a polygon of the relative frequency distribution,

QUESTION 3 [16]

A marketing research survey shows that approximately 80% of car owners indicate that their next car purchase would be an electric propelled car. If 5 prospective buyers are interviewed, determine the probability that:
3.1) all 5 indicate that their next car will be an electric propelled car.
3.2) At least three indicate that his or her next purchase will be an electric propelled car.
3.3) no-one indicates that their next car will be an electric propelled car
3.4) At most one indicates that his or her next purchase will be an electric propelled car.

QUESTION 4 [30]

4.1) Pulse rates of adult men are approximately normally distributed with a mean of 70 and a standard deviation of 8 . What is the probability of selecting a man with pulse rate of
4.1.1) 74.9 and higher
4.1.2) 64.1 and lower
4.1.3) 82.3 and lower
4.1.4) What is the probability that the pulse rate for a sample of four men will be between 66.8 and 72.7 (inclusive)
4.2) Three airlines serve a small town. Airline A has 50% of all the scheduled flights, where-as airline B has 30% and airline C has the remaining 20% of all scheduled flights. Their ontime rates are $80 \%, 65 \%$ and 40% respectively. An airplane has just left.

Let $A=\{$ airline $A\}, B=\{$ airline $B\}, C=\{$ airline $C\}, D=\{$ airline left on time $\}$

4.2.1) What is the probability that the airplane has left on time?
4.2.2) If an airplane left on time what is the probability that it belonged to airline A

QUESTION 5 [9]

The Tuck-shop on campus has compiled the following information on the prices and quantities of snacks from 2017 to 2022

ITEM	P_{b}	P_{i}		Q_{b}
	2017	2022		2017
	1.85	3.75		75
Toffees	1.50	2.25		140
Lollies	3.40	5.40		250
Chocolates	310			

Use 2017 as the base period to determine and interpret the simple price indexes for these three items in 2022.
(1) STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	00	01	02	.03	.04	05	.06	.07

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$
RIT
www.rit.edu/asc

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

APPENDIX A

Population mean, raw data

$$
\mu=\frac{\sum x}{N}
$$

Sample mean, raw data

$$
\bar{x}=\frac{\sum x}{n}
$$

Weightedmean
$\overline{X_{w}}=\frac{w_{1} X_{1}+w_{2} X_{2}+\ldots+w_{n} X_{n}}{w_{1}+w_{2}+\ldots+w_{n}}$

Geometric mean

$$
G M=\sqrt[n]{\left(X_{1}\right)\left(X_{2}\right)\left(X_{3}\right) \cdots\left(X_{n}\right)}
$$

Geometric mean rate of increase

$$
G M=\sqrt[n]{\frac{\text { Value at end of period }}{\text { Value at start of period }}}-1.0
$$

Sample mean grouped data

$$
\bar{x}=\frac{\sum £ x}{n}
$$

Median of grouped data

$$
\text { Median }=I+\frac{\frac{n}{2}-C F}{f} \text { (Class width) }
$$

Mean deviation

$$
\mathrm{MD}=\frac{\sum|\mathrm{x}-\overline{\mathrm{x}}|}{\mathrm{n}}
$$

Linear regression equation

$$
Y=a+b X
$$

Sample variance for raw data

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

Sample variance, raw data computational form

$$
S^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}
$$

Sample standard deviation, raw data

$$
S=\sqrt{\frac{\sum x^{2}-\frac{(\Sigma x)^{2}}{n}}{n-1}}
$$

Sample standard deviation, grouped data

$$
S=\sqrt{\frac{\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{n}}{n-1}}
$$

Coefficient of variation

$$
C V=\frac{s}{X}(100)
$$

Location of percentile

$$
L_{p}=(n+1) \frac{P}{100}
$$

Pearson's Correlation coefficient

$$
I=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{\left[n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}\right]\left[n\left(\sum Y^{2}\right)-\left(\sum Y\right)^{2}\right]}}
$$

Correlation test of hypothesis

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

Population standard deviation for raw data

$$
\sigma=\sqrt{\frac{\sum(X-\mu)^{2}}{N}}
$$

Population variance for raw data

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}
$$

Slope of regression line

$$
b=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}}
$$

Intercept of a regression line

$$
a=\frac{\sum Y}{n}-b\left(\frac{\sum X}{n}\right)
$$

The Range

Range = highest - lowest

APPENDIX B: ADDITIONAL FORMULAE

Mode $=L+\left(\frac{d_{1}}{d_{1}+d_{2}}\right) \times c$
position $Q_{j}=\frac{j n}{4}$ value $\quad Q_{j}=L+\frac{\left.\left(\frac{j n}{4}-F\right)\right) \times c}{f_{Q_{j}}}$
position $P_{j}=\frac{j n}{100}$ value $\quad P_{j}=L+\frac{\left.\left(\frac{j n}{100}-F\right)\right) \times c}{f_{P_{j}}}$

$$
\begin{array}{lll}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} & P(x)=\frac{n!}{x!(n-x)!} \pi^{x}(1-\pi)^{n-x} & P(\mathrm{x})=\frac{\lambda^{x} e^{-\lambda}}{x!} \\
z=\frac{x-\mu}{\sigma} & z_{\text {calc }}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} & t_{\text {calc }}=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\end{array}
$$

$$
z_{\text {calc }}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

$$
t_{\text {calc }}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{(n-1) s_{1}^{2}+(n-1) s_{2}^{2}}{n_{1}+n_{2}-1}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}$
$z_{\text {calc }}=\frac{p_{A}-p_{B}}{\sqrt{(p \times q)\left(\frac{1}{n_{A}}+\frac{1}{n_{B}}\right)}}$

$$
p=\frac{n_{A} p_{B}+n_{B} p_{A}}{n_{A}+n_{B}}
$$

$$
q=1-p
$$

$\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$
$F_{V}=P_{V}(1+i n)$
$F_{V}=P_{V}(1+i)^{n}$

$$
r=(1+i)^{m}-1 \quad D=B(1-i)^{n}
$$

$P=\frac{A}{(1+i)^{n}} \quad \quad P V=\frac{P(1+i)^{n}}{(1+j)^{n}} \quad I R R=\frac{N_{1} I_{2}-N_{2} I_{1}}{N_{1}-N_{2}}$

